NDA
Submission Dates
Brand Name
Generic Name
Reviewer
Team Leader
OCPB Division
ORM division
Snonsor
Relevant IND(s)
Submission Tvoe: Code
Formulation: Strength(s)
Indication
$20-560^{\text {(b) (4) }} 038$: BB: BB
Januarv 31. 2003: April 24. 2003: Julv 2. 2003
FOSAMAX ${ }^{\circledR}$
alendronate sodium
S.W. Johnnv Lau

Hae-Young Ahn
DPE II (HFD-870)
Metabolic and Endocrine (HFD-510)
Merck Research Laboratories
(b) (4)
vediatric studv report for exclusivitv: prioritv
5. 10.35. and 70 mg oral tablets

1 Executive Summary

Alendronate sodium, a bisphosphonate, is approved to treat and prevent osteoporosis in postmenopausal women, treat osteoporosis in men, treat glucocorticoid-induced osteoporosis, and treat Padget's disease. The sponsor submitted supplemental NDA 20-560 in response to the Food and Drug Administration's October 27, 2000 pediatric study Written Request and its March 8, 2002 amendment to seek the following for alendronate sodium:

- pediatric 6-month exclusivity

The sponsor conducted 2 clinical studies to satisfy the pediatric study Written Request and submitted the results in supplemental NDA 20-560. Briefly, the 2 studies are:

1. an efficacy and safety study (P135) to compare the effects of alendronate (5 or 10 mg daily) versus placebo, on pediatric patients aged 4 through 18 years with severe OI for: (1) change in mean lumbar spine (L1 to L4) bone mineral density at Month 12 and (2) safety and tolerability.
2. an absolute oral bioavailability study (P172) for the 35 and 70 mg alendronate oral tablets as compare to an $125 \mu \mathrm{~g}$ alendronate intravenous injection ($2.5 \mathrm{mg} / \mathrm{mL}$) in OI pediatric patients.

Per Study P172, the mean alendronate oral bioavailability ($95 \% \mathrm{CI}$) with respect to a $125 \mu \mathrm{~g}$ intravenous dose was $0.43 \%(0.28 \%, 0.64 \%)$ for OI pediatric patients weighing $<40 \mathrm{~kg}$ who received 35 mg oral dose and was $0.56 \%(0.36 \%, 0.87 \%)$ for OI pediatric patients weighing $\geq 40 \mathrm{~kg}$ who received 70 mg oral dose. The alendronate oral bioavailability is similar between OI patients and adults (historical data).

See medical officer's review for Study P135.

1.1. Recommendation

The Office of Clinical Pharmacology and Biopharmaceutics/Division of Pharmaceutical Evaluation II (OCPB/DPEII) has reviewed the Human Pharmacokinetics and Bioavailability section for supplemental NDA 20-560 and finds it acceptable. The sponsor should receive the labeling comments below (addition is underscored and deletion appears as strikethrough):

CLINICAL PHARMACOLOGY
Special Populations
Pediatric:

$\overline{\text { S.W. Johnny Lau, R.Ph., Ph.D. }}$ OCPB/DPEII

An Optional Intra-Division Clinical Pharmacology and Biopharmaceutics Briefing for supplemental NDA 20-560 was conducted on June 26, 2003; participants included H. Malinowski, J. Hunt, H. Ahn, and J. Lau.

FT signed by Hae-Young Ahn, Ph.D., Team Leader 6/ /03
2 Table of Contents Page
1 Executive Summary 1
1.1 Recommendations 2
2 Table of Contents 3
3 Summary of Clinical Pharmacology and Biopharmaceutics Findings 4
4 Question Based Review
4.1 Background5
4.2 General Clinical Pharmacology 5
4.3 Bioanalytical 5
4.4 Biopharmaceutics 6
5 Labeling Comments 8

3 Summary of Clinical Pharmacology and Biopharmaceutics Findings

The sponsor conducted Study P172 for alendronate to:

- determine the oral BA with respect to an intravenous dose in OI pediatric patients
- compare the oral BA results in OI pediatric patients to those for the historical adult data.

This study is part of the requirement to satisfy the pediatric study Written Request issued by the Office of Drug Evaluation II, Center of Drug Evaluation and Research, Food and Drug Administration on October 27, 2000.

Study P172 was a 2-period, randomized, single-dose, crossover, pharmacokinetic study conducted in 24 OI pediatric patients. Patients $<40 \mathrm{~kg}$ body weight received 2 single alendronate doses: a 35 mg oral tablet and a $125 \mu \mathrm{~g}$ intravenous dose. Patients $\geq 40 \mathrm{~kg}$ body weight also received 2 single alendronate doses: a 70 mg oral tablet and a $125 \mu \mathrm{~g}$ intravenous dose. The washout period was at least 2 weeks. All alendronate administration was after an overnight fast. Urine samples were collected for 24 hours postdose for alendronate concentration determination.

The mean alendronate oral bioavailability ($95 \% \mathrm{CI}$) with respect to a $125 \mu \mathrm{~g}$ intravenous dose was $0.43 \%(0.28 \%, 0.64 \%)$ for OI pediatric patients weighing $<40 \mathrm{~kg}$ who received 35 mg oral dose and was $0.56 \%(0.36 \%, 0.87 \%)$ for OI pediatric patients weighing $\geq 40 \mathrm{~kg}$ who received 70 mg oral dose.

In comparison, the mean oral bioavailability $(95 \% \mathrm{CI})$ in the prespecified adult historical control group was $0.65 \%(0.54 \%, 0.77 \%)$. The geometric mean ratio (GMR) of bioavailability for OI pediatric patients weighing $<40 \mathrm{~kg}$ compared to the adult historical controls was 0.63 , with a $95 \% \mathrm{CI}$ of $(0.39$, 1.04). The GMR of bioavailability for OI pediatric patients weighing $\geq 40 \mathrm{~kg}$ compared with the adult historical controls was 0.86 , with a 95% CI of $(0.52,1.41)$. The alendronate oral bioavailability was similar between OI pediatric patients and adults (historical data).

The sponsor also conducted Study P135 (efficacy and safety study) to satisfy the pediatric study Written request. See medical officer's review for Study P135.

4 Question-Based Review

4.1 Background

Osteogenesis imperfecta (OI) or "brittle bone disease" is a group of hereditary disorders of Type I collagen, characterized by osteoporosis and extreme bone fragility, which leads to fractures, chronic unremitting bone pain, severe skeletal deformities, short stature, and functional limitation.
Alendronate sodium, marketed as FOSAMAX ${ }^{\circledR}$, is a bisphosphonate that acts as a specific inhibitor of osteoclast-mediated bone resorption to treat and prevent osteoporosis. The sponsor primarily seeks alendronate sodium's pediatric exclusivity

The sponsor conducted a human absolute oral bioavailability study (P172) and a clinical safety and efficacy study (P135) in OI pediatric patients. Study P172 used the 35 mg oral alendronate single dose for patients $<40 \mathrm{~kg}$ body weight and 70 mg oral alendronate single dose for patients $\geq 40 \mathrm{~kg}$ body weight. Whereas, Study P135 used the 5 mg oral alendronate daily dose for patients $<40 \mathrm{~kg}$ body weight and 10 mg oral alendronate daily dose for patients $\geq 40 \mathrm{~kg}$ body weight. Alendronate doses differed between the 2 studies because the sponsor was requested to switch patients on 5 and 10 mg once-daily dosing to 35 mg and 70 mg once-weekly dosing, respectively, during Year 2 per the Written Request.

4.2 General Clinical Pharmacology

Alendronate clinical pharmacology information is available in:

- product labeling
- A.G. Porras et al. Pharmacokinetics of alendronate. Clin Pharmacokinet 36:315-28 (1999).
- J.H. Lin. Bisphosphonates: a review of their pharmacokinetic properties. Bone 18:75-85 (1996).

4.3 Bioanalytical

Are the bioanalytical methods for alendronate properly validated?
Yes. Briefly, the alendronate bioanalytical method in human urine samples had 3 steps:
(1) isolation, via precipitation and solid phase extraction of the analyte from urine,
(2) automated pre-column derivatization to form fluorescent products of the analytes, and
(3) high pressure liquid chromatography (HPLC) separation and fluorescence detection of the resulting derivatives.

Validation for the alendronate bioanalytical method in human urine samples follows:

	Alendronate
Method	HPLC - fluorescent quantification
LLOQ, $\mathrm{ng} / \mathrm{mL}$	$1 \mathrm{ng} / \mathrm{mL},>15 \%$ below LLOQ = not quantifiable
Recovery, $\%$	not available
Linearity, $\mathrm{ng} / \mathrm{mL}$	$1-25 \mathrm{ng} / \mathrm{mL}$
Accuracy	
intraday	$97.2-106.0 \%$
interday	$93.6-113.5 \%$
Precision, \% CV	$3.0-7.5 \%$
intraday	$5.4-9.3 \%$
interday	

LLOQ = lower limit of quantitation

4.4 Biopharmaceutics

1. Were the formulation tested in Studies P172 and P135 identical to the marketed formulation?

Yes. The formulations of the 35 and 70 mg alendronate oral tablets tested in Study P172 were the same as those to the marketed tablets. The formulation of the IV alendronate solution tested in Study P172 was the same as those tested under IND ${ }^{(b)(4)}$ to determine alendronate oral bioavailability (BA). The formulation of the 5 and 10 mg alendronate tablets tested in Study P135 were the same as those to the marketed tablets.

2. Did the sponsor adequately assess the alendronate absolute BA in OI patients?

Yes. Briefly, Study P172 was an open-label, 2-period, randomized, single-dose, crossover, pharmacokinetic study conducted in 24 OI pediatric patients, 12 patients each for the $<40 \mathrm{~kg}$ and ≥ 40 kg body weight groups. Patients $<40 \mathrm{~kg}$ body weight received 2 single alendronate doses: a 35 mg oral tablet and a $125 \mu \mathrm{~g}$ intravenous dose. Patients $\geq 40 \mathrm{~kg}$ body weight received 2 single alendronate doses: a 70 mg oral tablet and a $125 \mu \mathrm{~g}$ intravenous dose. The washout period was at least 2 weeks. An 11-hour overnight fast preceded all alendronate dosing, which was administered with 180 mL tap water. Patients received a standardized meal 2 hours after dosing. Alendronate was intravenously infused over 2 hours. Urine samples were collected for 24 hours postdose for alendronate concentration determination. Absolute oral alendronate BA was assessed as the total urinary excretion over 24 hours following the 35 or 70 mg tablet relative to the $125 \mu \mathrm{~g}$ IV administration. The urinary excretion data was normalized to 1 mg dose for both oral and IV administration.

The sponsor's absolute alendronate oral BA assessment follows:

- 0.43% with $95 \% \mathrm{CI}(0.28 \%-0.64 \%)$ for $<40 \mathrm{~kg}$ OI patients administered 35 mg oral dose vs. 125 $\mu \mathrm{g}$ IV dose
- 0.56% with $95 \% \mathrm{CI}(0.36 \%-0.87 \%)$ for $\geq 40 \mathrm{~kg}$ OI patients administered 70 mg oral dose vs. 125 $\mu \mathrm{g}$ IV dose
This reviewer repeated the analyses and observed the same results as the sponsor's assessment above (see Attachment).

> Summary Statistics for Bioavailability (\%) of Alendronate for Adult and Pediatric Patients

Population	N	$\begin{gathered} \hline \text { LS } \\ \text { Mean } \\ (\%) \\ \hline \end{gathered}$	Media $\mathrm{n}(\%)$	$\begin{aligned} & \text { Min } \\ & (\%) \\ & \hline \end{aligned}$	$\begin{gathered} \text { Max } \\ (\%) \\ \hline \end{gathered}$	Standard Deviation (\%)	GMR to Adult	$\begin{gathered} 95 \% \text { CI for } \\ \text { GMR } \\ \hline \end{gathered}$
$<40 \mathrm{~kg}$	12	0.41	0.40	0.18	1.74	0.45	0.63	(0.39, 1.04)
$\geq 40 \mathrm{~kg}$	12	0.56	0.64	0.09	1.27	0.33	0.86	(0.52, 1.41)
Adult	86	0.65	0.68	0.03	8.17	1.02		
RMSE $=0.810$								
Pooled Pediatric	24					0.39	0.74	(0.51, 1.07)
Adult	86	0.65	0.68	0.03	8.17	1.02		
RMSE $=0.809$								
LS = Least-squares (back-transformed from the log scale). GMR $=$ Geometric mean ratio. $C I=$ Confidence interval. RMSE $=$ Root Mean Square Error from the analysis of variance model.								

The overall geometric mean $(95 \% \mathrm{CI}) \mathrm{BA}$ for adult patients in the preselected 4 historical studies was $0.65 \%(0.54 \%, 0.77 \%)$ (See table above). The participants in these 4 studies ($65,69,74$, and 144) represented female and male from the age range of 21 to 76 . Per the table above, the geometric mean ratio (GMR) of BA in OI pediatric patients weighing $<40 \mathrm{~kg}$, relative to the adult population, was 0.63 , with a 95% CI of $(0.39,1.04)$. The GMR of BA in pediatric patients weighing $\geq 40 \mathrm{~kg}$, relative to the adult population, was 0.86 , with a $95 \% \mathrm{CI}$ of $(0.52,1.41)$. The GMR of BA in the pooled OI pediatric patient population relative to the adult population, was 0.74 , with a $95 \% \mathrm{CI}$ of $(0.51,1.07)$. The \log BA versus body weight figure below graphically demonstrates the similarity of BA between OI patients and adults (historical data).

Oral Bioavailability (Log-Scale) Versus Weight (kg) for Pediatric Patients and Adult Historical Controls

The GMR with $95 \% \mathrm{CI}$ of the total alendronate urinary excretion after the oral administration to intravenous administration in the 2 dose groups of OI patients and the GMR with 95% CI of the total alendronate urinary excretion of pooled OI pediatric patients to adults were all identical to the corresponding BA assessment as shown above. The dose-adjusted GMR of total urinary excretion after IV dosing for pediatric patients weighing $<40 \mathrm{~kg}$, relative to the adult population, was 1.09 , with a $95 \% \mathrm{CI}$ of $(0.92,1.29)$ (see table below). The dose-adjusted GMR of total urinary excretion after IV dosing for pediatric patients weighing $\geq 40 \mathrm{~kg}$, relative to the adult population, was 1.08 , with a 95% CI of $(0.91,1.28)$. The GMR ratio of total urinary excretion after IV dosing for the pooled pediatric patient population, relative to the adult population, was 1.09 , with a $95 \% \mathrm{CI}$ of $(0.96,1.23)$. This is consistent that the total alendronate urinary excretion data upon intravenous administration is similar between OI pediatric patients and adults (historical data).

> Summary Statistics for Total Urinary Excretion of Alendronate ($\mu \mathrm{g}$) for Adult and Pediatric Patients After an IV Dose (Dose-Adjusted to 1 mg)

Population	N	$\begin{array}{\|c} \hline \text { LS Mean } \\ (\mu \mathrm{g}) \end{array}$	Median $(\mu \mathrm{g})$	$\begin{aligned} & \mathrm{Min} \\ & (\mu \mathrm{~g}) \end{aligned}$	Max ($\mu \mathrm{g}$)	GMR to Adult	$\begin{gathered} 95 \% \text { CI for } \\ \text { GMR } \\ \hline \end{gathered}$
$<40 \mathrm{~kg}$	12	442.0	459.5	313.4	518.9	1.09	(0.92, 1.29)
$\geq 40 \mathrm{~kg}$	12	438.5	440.5	336.6	572.9	1.08	(0.91, 1.28)
Adult	86	405.3	420.3	158.6	803.3		
RMSE $=0.281$							
Pooled Pediatric	24	440.2	459.5	313.4	572.9	1.09	(0.96, 1.23)
Adult	86	405.3	420.3	158.6	803.3		
RMSE ${ }^{\text {II }}=\mathbf{0 . 2 8 0}$							
LS = Least-squares. GMR $=$ Geometric mean ratio . $\mathrm{CI}=$ Confidence interval. RMSE = Root Mean Square Error from the analysis of variance model.							

5 Labeling Comments

CLINICAL PHARMACOLOGY
Special Populations

See the added (underscored) and deleted (strikethrough) statements above.

Attachment

```
SAS code for assessing alendronate absolute BA in <40 kg OI patients:
data fosamax;
infile 'C:\510 review\osteo\bisphosphonate\NDA\20560\u120560.txt';
input sub per seq trt $ amt amtpermg;
lnamtpermg=log(amtpermg);
proc sort data = fosamax;
by trt;
proc means data = fosamax;
by trt;
proc glm data = fosamax;
    class sub per seq trt;
    model lnamtpermg = seq sub(seq) per trt;
    test h = seq e = sub(seq);
    estimate 'ORAL1 vs. IV1' trt -1 1;
lsmeans trt / pdiff cl alpha=0.05;
    proc print data = fosamax;
    run;
```

SAS Output for assessing alendronate absolute BA in < 40 kg OI patients:
The SAS System
17:44 Thursday, June 19, 20031

6.2517954
ff

Variable	N	Mean	Std Dev	Minimum
Maximum				
ff				
sub	12	7.2500000	3.9571569	1.0000000
13.0000000				
per	12	1.5833333	0.5149287	1.0000000
2.0000000				
seq	12	1.5833333	0.5149287	1.0000000
2.0000000				
amt	12	78.4650000	62.9086046	24.2200000
245.9800000				
amtpermg	12	2.2482808	1.8025389	0.6939830
7.0481380				
Inamtpermg	12	0.5936822	0.6514070	-0.3653078
1.9527635				
ff				
The SAS System 17:44 Thu				
June 19, 20032				

The GLM Procedure
Class Level Information
Class Levels Values
$\begin{array}{llllllllllllll}\text { sub } & 12 & 1 & 2 & 3 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13\end{array}$
per 212
seq 212
trt 2 IV1 ORAL1

Number of observations 24
The SAS System 17:44 Thursday,
June 19, 20033

The GLM Procedure
Dependent Variable: lnamtpermg

Source	DF	Sum of Squares	Mean Square	F Value
$\mathrm{Pr}>\mathrm{F}$				
Model	13	184.2504476	14.1731114	72.05
<. 0001				
Error	10	1.9672379	0.1967238	
Corrected Total	23	186.2176855		

IV1	6.09100979	$<.0001$
ORAL1	0.63721974	

	lnamtpermg LSMEAN	95\% Confidence	Limits
IV1	6.091010	5.801677	6.380342
ORAL1	0.637220	0.347887	0.926552

Least Squares Means for Effect trt

Difference
Between
Means

95\% Confidence Limits for
LSMean(i)-LSMean(j)

The SAS System

June 19, 20035

Obs	sub	per	seq	trt	amt	amtpermg	lnamtpermg
1	1	1	2	IV1	33.47	313.390	5.74745
2	2	2	1	IV1	43.75	414.692	6.02754
3	3	1	2	IV1	55.26	512.141	6.23860
4	5	2	1	IV1	50.56	472.965	6.15902
5	6	1	2	IV1	48.92	455.918	6.12231
6	7	1	2	IV1	48.56	476.078	6.16558
7	8	2	1	IV1	49.42	451.324	6.11219
8	9	1	2	IV1	49.74	463.129	6.13800
9	10	2	1	IV1	50.60	464.220	6.14036
10	11	2	1	IV1	44.47	405.748	6.00573
11	12	1	2	IV1	45.20	518.944	6.25180
12	13	1	2	IV1	44.19	398.467	5.98762
13	1	2	2	ORAL1	24.22	0.694	-0.36531
14	2	1	1	ORAL1	157.02	4.499	1.50389
15	3	2	2	ORAL1	35.87	1.028	0.02741
16	5	1	1	ORAL1	29.95	0.858	-0.15296
17	6	2	2	ORAL1	48.88	1.401	0.33688
18	7	2	2	ORAL1	69.06	1.979	0.68249
19	8	1	1	ORAL1	52.61	1.507	0.41042
20	9	2	2	ORAL1	73.97	2.119	0.75117
21	10	1	1	ORAL1	75.99	2.177	0.77811
22	11	1	1	ORAL1	245.98	7.048	1.95276
23	12	2	2	ORAL1	71.55	2.050	0.71791
24	13	2	2	ORAL1	56.48	1.618	0.48140

SAS code for assessing alendronate absolute BA in $\geq 40 \mathrm{~kg}$ OI patients:
data fosamax;
infile 'C:\510 review \osteo\bisphosphonate\NDA $\backslash 20560 \backslash u 220560$.txt'; input sub per seq trt \$ amt amtpermg;
lnamtpermg=log(amtpermg);
proc sort data = fosamax;

```
by trt;
proc means data = fosamax;
by trt;
```

```
proc glm data = fosamax;
```

proc glm data = fosamax;
class sub per seq trt;
class sub per seq trt;
model lnamtpermg = seq sub(seq) per trt;
model lnamtpermg = seq sub(seq) per trt;
test h = seq e = sub(seq);
test h = seq e = sub(seq);
estimate 'ORAL2 vs. IV2' trt -1 1;
estimate 'ORAL2 vs. IV2' trt -1 1;
lsmeans trt / pdiff cl alpha=0.05;
lsmeans trt / pdiff cl alpha=0.05;
proc print data = fosamax;
proc print data = fosamax;
run;

```
    run;
```

SAS Output for assessing alendronate absolute BA in $\geq 40 \mathrm{~kg}$ OI patients:
The SAS System
17:51 Thursday, June 19, 20031

trt=ORAL2

Variable	N	Mean	Std Dev	Minimum
Maximum				
ff				
sub	12	22.5000000	3.6055513	17.0000000
28.0000000				
per	12	1.5000000	0.5222330	1.0000000
2.0000000				
seq	12	1.5000000	0.5222330	1.0000000
2.0000000				

	The GLM Procedure	
Least Squares Means		
	H0:LSMean1=	
trt	Lnamtpermg	LSMean2
		Pr $>\mid$ t \mid
IV2	6.08325500	$<.0001$
ORAL2	0.89258668	

	lnamtpermg LSMEAN	95\% Confidence	Limits
IV2	6.083255	5.768802	6.397708
ORAL2	0.892587	0.578134	1.207039

June 19, 20035

Obs	sub	per	seq	trt	amt	amtpermg	lnamtpermg
1	17	2	1	IV2	62.79	572.902	6.35071
2	18	1	2	IV2	51.89	484.501	6.18312
3	19	2	1	IV2	60.66	551.956	6.31347
4	20	1	2	IV2	58.37	543.482	6.29800
5	21	1	2	IV2	35.65	336.638	5.81901
6	22	2	1	IV2	37.90	355.869	5.87456
7	23	2	1	IV2	51.84	478.670	6.17101
8	24	1	2	IV2	37.07	341.974	5.83474
9	25	1	2	IV2	40.08	368.044	5.90820
10	26	2	1	IV2	43.85	398.274	5.98714
11	27	1	2	IV2	58.92	524.199	6.26187
12	28	2	1	IV2	41.76	402.312	5.99723
13	17	1	1	ORAL2	36.31	0.522	-0.65067
14	18	2	2	ORAL2	313.84	4.509	1.50612
15	19	1	1	ORAL2	243.50	3.499	1.25235
16	20	2	2	ORAL2	189.98	2.730	1.00415
17	21	2	2	ORAL2	297.53	4.275	1.45275
18	22	1	1	ORAL2	215.04	3.090	1.12806
19	23	1	1	ORAL2	77.53	1.114	0.10790
20	24	2	2	ORAL2	201.94	2.901	1.06521
21	25	2	2	ORAL2	127.19	1.827	0.60292
22	26	1	1	ORAL2	134.23	1.929	0.65679
23	27	2	2	ORAL2	238.23	3.423	1.23047
24	28	1	1	ORAL2	269.82	3.877	1.35499

[^0]This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

```
    /s/
---------------------
S.W. Johnny Lau
7/7/03 06:23:48 PM
BIOPHARMACEUTICS
Hae-Young Ahn
7/9/03 02:49:17 PM
BIOPHARMACEUTICS
```


[^0]: 20 Page(s) has been Withheld in Full as B4 (CCI/TS) immediately following this page

